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1. Introduction 
This document is the final report for the VEST research project. VEST is funded by the 
DARPA PCES program under grant F33615-00-C-3048.  
 
Success of distributed embedded systems depends on low cost, quickness to market, and 
in some cases, flexible operation of the product. The reliability of these products and the 
degree of configurability are paramount concerns, and, in many cases, there are important 
real-time constraints that have to be met. Building distributed embedded system software 
is time-consuming and costly. The use of software components for constructing and 
tailoring these systems has promise. What are needed are tools to support program 
composition and analysis of component-based embedded systems. In these systems 
designs are instantiated largely by choosing pre-written components from libraries rather 
than by implementing the design from scratch. Composition tools are different from 
top-down design tools (e.g., Rational Rose) that do not directly support composition of 
pre-existing components. One major difficulty of embedded system composition is the 
crosscutting dependencies among components that are often hidden from the composers. 
Composition tools should support dependency checks across component boundaries and 
expose potential composition errors due to the crosscutting dependencies.  
 
Our work focuses on the development of effective composition mechanisms, and the 
associated dependency and nonfunctional analyses for real-time embedded systems. Our 
solution is based on extending the notion of aspects. Aspects are defined as those issues 
that cannot be cleanly encapsulated in a generalized procedure because they are 
characterized as being systemic.  They usually include issues that affect the performance 
or semantics of components. This includes many real-time, concurrency, synchronization, 
and reliability issues. Aspects, to date, have largely been language dependent in that 
aspects are implemented as language constructs. A major contribution of our work is that 
we extend the concept of aspects to language independent notions and apply them at 
design time. Our solutions are embodied within a toolkit called VEST (Virginia 
Embedded Systems Toolkit). VEST provides an environment for the composition and 
analysis of distributed real-time embedded systems. VEST models application 
components, middleware, OS, and hardware components. This feature supports the 
composition and tailoring of every layer in an embedded system for a specific application, 
which leads to more complete crosscutting dependency checks and more optimization 
opportunities. VEST itself is not a complete requirements, design and implementation 
tool; rather it currently focuses on the specific composition and analysis tasks.   
 
VEST includes features that are found in other tools. However, there are several novel 
features in VEST. The major contributions of VEST are two types of 
language-independent aspects referred to as aspect checks and prescriptive aspects. 
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Together these permit the benefits of aspects to be exercised early in the composition 
process rather than in the implementation phase. A set of representative aspect checks in 
embedded software is identified and implemented in VEST. Some of these aspects are 
simple dependency checks; others are complex and may involve the entire system, e.g., 
distributed real-time scheduling. The simple fact of identifying key aspect checks 
improves our understanding of specific crosscutting concerns found in distributed 
embedded systems, including middleware. Prescriptive aspects allow application specific 
advice to be applied to designs and they have a global effect. The significance of VEST is 
largely derived from language-independent aspects.  
 

VEST has been integrated with other tools in the PCES and MoBIES projects. An 
interface was built that allows VEST to invoke a commercial real-time analysis tool 
called TimeWiz. This provides detailed rate monotonic analysis for many types of 
real-time systems. VEST also produces XML output so that the Boeing configuration 
tools can be used to construct the executables. VEST also includes a mapping tool that 
converts Boeing Boldstroke middleware Avionics Component Library (ACL) 
components to VEST-readable components. The Implementation Interface Format (IIF) 
from Boeing was mapped to VEST, thereby enabling some automatic assignment of 
timing attributes for components.  

 

This report is structured as follows: section 2 presents a high level overview of VEST.  
Section 3 describes various aspect checks, including schedulability check, memory 
footprint check, event dependency check and buffer size check. Section 4 discusses 
prescriptive aspects. Section 5 gives more details on the Virginia Prescriptive Aspect 
Language (VPAL). Section 6 uses 3 case studies to illustrate the functionalities of VEST, 
including experiments that measure the amount of productivity gains from using VEST. 
Section 7 summarizes the versions of VEST that have been delivered. Section 8 provides 
a short summary. Appendix A is the BNF grammar definition of VPAL.  BNF is an 
acronym for "Backus Naur Form" - a formal notation to describe the syntax of a given 
language. 
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2. Overview of VEST  
VEST provides an environment for constructing and analyzing component-based 
distributed real-time embedded systems. VEST helps developers select or create passive 
software components, compose them into a product, map the passive components onto 
active structures such as threads, map threads onto specific hardware, and perform 
dependency checks and non-functional analyses to offer as many guarantees as possible 
along many dimensions including real-time performance and reliability. Distributed 
embedded systems issues are explicitly addressed via the mapping of components to 
active threads and to hardware, the ability to include middleware as components, and the 
specification of a network and distributed nodes. 
  
The VEST environment is composed of five libraries, a set of aspect checks, and a 
GUI-based environment for composing and analyzing embedded products. 
 
• Component Libraries: Because VEST supports real-time distributed embedded 

systems, the VEST component libraries contain both software and descriptions of 
hardware components and networks. VEST components can be abstract or actual. An 
abstract component is a design entity that represents the requirements, e.g., a timer 
with certain requirements or a generic processor is an abstract component. An actual 
component is the implementation or description of a reusable entity. A specific timer 
module written in C and a Motorola MPC7455 are examples of actual components. 
Sets of reflective information exist for each of these component types. The reflective 
information of an abstract component includes its interface and requirements such as 
for security. The reflective information for actual components includes categories 
such as linking information, location of source code, worst-case execution time, 
memory footprint, and other reflective information needed to analyze crosscutting 
dependencies. The extent of the reflective information and its extensibility are some 
of the key features that distinguish VEST from many other tools (see section 6). To 
support the whole design process of embedded systems, VEST implements the 
following four component libraries each for a separate software/hardware layer: 

• Application Library includes software components for a particular application 
domain. For example, an avionics application library includes a set of navigation, 
planning, sensor fusion, and pilot display components. Currently, application 
components in VEST are CORBA components.  

• Middleware Library includes components of the middleware. For example, a 
Real-Time CORBA library includes different CORBA service modules such as 
scheduling services and persistence services.  
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• OS Library includes components of operating systems. For example, threads are OS 
components in VEST and also have reflective information describing their attributes 
such as invocation period and scheduling priorities. 

• Hardware Library includes descriptions of hardware components such as processors, 
RAM, NVRAM, buses, network connections, DSP, A/D and D/A, actuators and 
sensors.   

• Prescriptive Aspects Library: Prescriptive aspects are reusable programming 
language independent advice that may be applied to a design. For example, a 
developer can invoke a set of prescriptive aspects in the library to add a certain 
security mechanism en masse to an avionics product. 

• Aspect Checks: VEST implements both a set of simple intra- and inter-component 
aspect checks that crosscut component boundaries. A developer can apply these 
checks to a system design to discover errors caused by dependencies among 
components. One aspect check in VEST is the real-time schedulability analysis for 
both single-node and distributed embedded systems. VEST can also invoke 
off-the-shelf analysis tools from its GUI environment. 

• Composition Environment: VEST provides a GUI-based environment that lets developers 
compose distributed embedded systems from components, perform dependency checks, and 
invoke prescriptive aspects on a design. As shown in figure 1 below, the GUI of VEST 
displays four main panels. The main canvas contains the product under development. At first, 
this contains abstract components that describe the design. The user then chooses actual 
components from libraries to instantiate the design. Actual components also appear on this 
main canvas. The second graphical panel (on the right hand side) displays the structure of the 
product under development. The third panel (on the bottom left) displays all the components 
in a particular component library once it is chosen. The fourth panel (on the lower right) 
displays all the attributes (reflective information) of a particular component when that 
component is highlighted. The developer can invoke an aspect check by clicking on a 
corresponding button on the menu bar. He can also apply a prescriptive aspect by invoking an 
aspect interpreter from a button on the menu bar. 
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Figure 1: VEST Composition Environment 

From the VEST GUI, a system developer can compose a distributed embedded system in the 
following way: 

1) Design a product by choosing and combining abstract components from the libraries. 
In the future, designs could be imported from a requirements tool , e.g., from Rose 
models based on UML. To date, we have implemented a mapping program that 
permits component descriptions based on UML to be imported into VEST libraries. 

2) Design the distributed systems hardware platform by choosing and combining 
abstract components from the libraries. 

3) Map software components to hardware and threads so that the active part of a 
composed system can be designed and analyzed. Only after this step can we truly do 
the real-time analysis since execution times are highly platform dependent.  

4) Synthesize the product by instantiating abstract components with actual components. 
It is possible to create a hierarchy of components. 

5) Apply prescriptive aspects. This is one area where VEST makes a major contribution. 
Previous systems do not have enough support for crosscutting dependencies among 
components and this is one advantage of VEST.  

6) Perform aspect checks and invoke (internal and off-the-shelf) analysis tools to 
analyze a configured system. If some checks fail, the developer may need to 
reconfigure or replace the actual components and repeat the checks.  

VEST also provides a separate GUI for system administrators to maintain the libraries 
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and checks. From this interface, a system administrator can create a new abstract or 
actual component. Specifying components entails supplying a significant amount of 
validated reflective information. He can also add or delete prescriptive aspects and 
dependency checks.  
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3. Aspect Checks 
One goal of VEST is to provide support for various types of dependency checking among 
components during the composition process. Dependency checks are invoked to establish 
certain properties of the composed system. This is a critical part of real-time embedded 
system design and implementation. Some dependency checks are simple and have been 
understood for a long time. We call these intra- and inter-component dependency checks. 
Other dependencies are very difficult and even insidious. We refer to these as crosscutting 
dependencies or aspect checks. Aspect checking is an explicit check across components 
that exist in the current product configuration. We have identified many aspect checks 
that would help a developer avoid difficult to find errors when creating embedded 
systems from components. In many cases the important thing is identifying the check 
required and implementing it so that it is automatic. Although the implementation of 
some checks may be simple, when these checks are combined with all the other features 
of VEST, the result is a powerful tool.  
 
Aspect checks verify certain properties of a real-time embedded system design. Aspect 
checks are explicit checks across components in a system. Usually an aspect check looks 
for hidden dependencies among components that are hard to directly identify by a 
designer. There are various kinds of “global” hidden dependencies in a system design. We 
focus on the most interesting checks to designers in this avionics application. In the 
domain of avionics systems, our aspect checks include a memory footprint check, an 
event channel check, a buffer size check, and schedulability analysis.  
 
Developers can invoke checks on the current product from the GUI environment. In 
general, it is our belief that aspects (both aspect checks and prescriptive aspects) include 
an open ended set of issues. Therefore, we cannot hope to be complete.  Rather we need 
to identify key aspects for embedded systems and create the specification and tools to 
address as many of these issues as possible. The more aspect checks that can be 
performed, the more confidence in the resulting composed system we will have. However, 
by no means do we claim that the system is correct; only that certain specific checked 
errors are not present. 
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Figure 2: Schedulability analysis in VEST 

3.1 Real-Time Schedulability Check 
An important check for real-time embedded systems is the schedulability analysis that 
validates whether all tasks can make their deadlines. Note that while designing and 
implementing a system that most changes made will affect the real-time properties of the 
system. This makes real-time scheduling a global cross cutting dependency. While many 
different schedulability analysis techniques exist, they differ in their assumptions on the 
task set and none of the existing analysis is applicable to all real-time embedded systems. 
The compatibility between schedulability analyses and the characteristics of the designed 
system is a typical crosscutting dependency that is “hidden” from the designer. Using an 
incompatible analysis on a system can lead to timing violations even when the 
schedulability analysis itself is correct. To handle different types of embedded systems, 
VEST provides a flexible and extensible scheduling tool that provides aspect checks on 
the compatibility between existing schedulability analyses and the system. This tool 
(shown in figure 2 above) is composed of a set of schedulability analysis routines, an 
assumption table, and a reflective information collector. The assumption table lists the 
assumptions of each schedulability analysis routine. The current list of assumptions 
includes:  
 
Periodic: are all the tasks periodic? 

Distributed:  are any of the tasks distributed on multiple processors? 

Importance: are important tasks protected in overload conditions?  

Blocking: can low priority tasks block high priority tasks? 

Precedence: are there precedence constraints among tasks? 

For example, the assumptions of the Rate Monotonic analysis are that all tasks are 
periodic. The Rate Monotonic with Priority Ceiling protocol’s assumptions are (periodic, 
blocking). The VEST scheduling tool is extensible and new scheduling techniques can be 
added to the tool together with their assumptions.  
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Developers can assess the schedulability of the current design by running the scheduling 
tool from the GUI. The reflective information collector scans the software, hardware and 
network components of the design and produces a platform/task set information file that 
includes a list of the characteristics and the timing information of the task set. The tool 
selects an analysis whose assumptions match the characteristics of the system. This 
ensures that proper analysis and scheduling policy is applied. For example, for a system 
with all independent periodic tasks on a single processor, the Rate Monotonic Analysis 
(RMA) check or Maximum Urgency First (MUF) will be applied to the system. However, 
if the same task set is designed on a distributed platform, the DM/Offset analysis 
described below will be applied.  
 
3.1.1 Deadline Monotonic Scheduling with Phase Offset 
Currently the VEST scheduling tool implements the basic Rate Monotonic check, the 
Maximum Urgency First algorithm, and a more sophisticated end-to-end analysis for 
distributed systems. In applying the tool to a Boeing’s distributed avionics case study, we 
found that RMA and MUF were not sufficient because such systems often run on a 
distributed platform. Avionics based on real-time CORBA (e.g., Bold Stroke and TAO) 
requires support for the following distributed scheduling problem (see figure3 below).  
 
A periodic task Ti consists of multiple subtasks {Tij} on different processors. The set of 
subtasks have the same period Pi, and the task deadline Di = Pi. Figure 3 shows a task T1 
having three subtasks connected by arrows (consider these T11, T12, T13 not labeled in 
figure 3). After completion of the first subtask T11, an event is pushed to the second 
subtask T12, and similarly for the third subtask T13. The set of three subtasks of T1 has a 
single deadline and period P1=D1. In this example, this task T1 is physically placed on 
three distinct processors connected via a bus or a LAN. This example explains a single 
task. The system is then composed of multiple tasks, each task Ti composed of one or 
more subtasks placed on one or more physical processors, and with communications 
proceeding in possibly different directions among the processors.  
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Figure 3: Schedulability Analysis for Deadline Monotonic with Phase Offset 

This distributed scheduling problem can be modeled as an end-to-end scheduling 
problem. To provide scheduling support for the above distributed scheduling problem, 
VEST implements a scheduling analysis that we call Deadline Monotonic with phase 
Offset (DM/Offset). The assumptions of DM/Offset are (periodic, distributed).  
 
If the design matches the assumptions, DM/Offset assigns intermediate deadlines {Dij} 
(e.g., D11, D12 and D13 in 0) for the subtasks {Tij} of each task Ti, and accounts for the 
worst-case network delay tc. The first subtask Ti1 has a start time at the beginning of its 
period and a deadline less than its period; the subsequent subtask have a static phased 
offset equal to the deadline of its previous component plus tc. (The static offset requires 
delaying the release of a subtask Tij if its predecessor Tij-1 finishes earlier than its 
deadline.) The deadline of the last subtask equals the deadline of the whole task. If every 
subtask Tij meets its intermediate deadline, the whole task meets its deadline Di. 
Consequently, the distributed schedulability analysis is reduced to the analysis of each 
node independently with phased offset.  
 
For schedulability analysis on each node, we employ Audsley’s priority assignment and 
analysis algorithm [7], which provides an optimal priority assignment and feasibility test 
algorithm for static priority tasks with arbitrary start times (phase offsets) on a single 
node. It is different from Rate Monotonic and Deadline Monotonic priority assignment 
schemes, which assume that tasks must be released simultaneously, i.e., without 
considering the start times (phase offsets). The current DM/Offset analysis takes a simple 
approach that evenly divides the deadline of each task as the intermediate deadlines of its 
subtasks.  
 
While the scheduling algorithms themselves are not novel, the extensible architecture of 
our scheduling tool allows us to incorporate existing schedulability analysis techniques 
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that handle static and/or dynamic offset in distributed real-time systems. Further, these 
algorithms acquire the task models and hardware models automatically from VEST itself. 
This facilitates repeated analysis.  

 

3.2 Memory Footprint Check 
The memory footprint check is used to verify whether there is enough physical memory 
to support the system software. Insufficient memory can cause serious problems when the 
system is deployed. There are two parts to the check. The first part of the check is 
concerned with main memory. Here, a sum is done of the memory needed by all the 
software components, and the available physical memory (RAM) provided by the 
hardware. The check verifies whether there is enough physical memory in the system for 
the software components defined. The second part of the memory footprint check 
involves non-volatile memory (NVM). Similar to the first check, this check verifies that 
there is enough NVM available in hardware as needed by the software components of the 
system. 
 

3.3 Event Check 
Components communicate with each other by sending events through event channels or 
paths. The event check iterates through all components and makes sure that every event 
supplier has an event consumer corresponding to it and every event consumer has an 
event supplier corresponding to it. Mismatches in the event channel are automatically 
identified. Also, circular event dependencies can be checked by going through the event 
channel. 
 
3.4 Buffer size check 
The buffer size check is used to make sure that there are no buffer overflows during 
communication between software components. In our design, every component has a 
buffer to temporarily hold event messages received from other components before they 
are processed.  The size of a buffer needed by a component to avoid overflow is based 
on four parameters – the number of event suppliers, event supplier’s supply rate, event 
consumer’s consume rate and the size of the event message. The event supply and 
consume rate vary among different components in the system. Also, different events have 
different message sizes. We can calculate the size of the buffer needed by a particular 
component by summing of the sizes of the buffers needed for the event messages it 
receives from each of its event suppliers. Each event buffer size is calculated as follows  
[(Supplier Event Supply Rate)/(Consumer Event Consume Rate)]*(Event Message Size) 
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4. Prescriptive Aspects 
Prescriptive aspects (written in VPAL) are reusable programming language independent 
advice that may be applied to a design. For example, a designer can invoke a set of 
prescriptive aspects in the library to add a certain security mechanism en masse to an 
avionics product. This view of prescriptive aspects can be considered codifying expert 
advice. Prescriptive aspects also support system-wide modifications that are performed in 
an easy to change manner, and then results in a complete and consistent change to the 
system design.  

Aspect checks and prescriptive aspects work in a complementary way. Aspect checks 
examine the system for hidden crosscutting dependencies while prescriptive aspects are 
applied to modify the system as directed by the designer, e.g., if the aspect check 
determines a deficiency. Their relationship is described in following diagram. Both aspect 
checks and prescriptive aspects are implemented as interpreters in VEST.  

 

Suppose a given system has only periodic tasks and a change is made to add aperiodic 
tasks. A particular aspect check we have implemented is to identify all those components 
that had previously assumed that no aperiodic tasks would exist. This check detects that 
the scheduling algorithm also has to change (assuming that the original real-time 
scheduling algorithm only addressed periodic tasks). Developers are presented with the 
information and then must make the proper changes to the design (e.g., invoke a 
prescriptive aspect to add sporadic server to the scheduler) using prescriptive aspects 
described in the next subsection. They can then re-run this aspect check to insure that the 
problem no longer exists. 
 
Prescriptive aspects have two major roles: as a system design modification tool, and as an 
application of expert advice obtained on previous domain specific implementations. In 
this section we consider each of these in turn. We then discuss the concept of hierarchies 
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of prescriptive aspects which are useful for both types of prescriptive aspects. 

4.1 System Design Modifications 

Prescriptive aspects are advice that may be applied to a basic functional design. This 
encourages a developer to design in a functional manner and then consider the 
non-functional aspects. This separation of concerns makes design easier. For example, a 
designer might create the functional modules for navigation of an aircraft and then apply 
advice to support real-time performance and security. Overall, prescriptive aspects 
support a widespread global change in the design in a complete and consistent manner by 
simply defining new advice or using pre-declared advice and applying it to your design. 
This prevents bugs where (without this support) the changes required are only made in 
some of the requisite places. Also implied by this advantage is that re-applying different 
advice can be done simply and aspect checks and schedulability analysis can be re-run 
automatically. This facilitates looking at multiple competing design options, thereby 
resulting in more effective final designs. 
 
To change the system design, prescriptive aspects can adjust properties in the reflective 
information (e.g., change the priorities of a task or the replication levels of a software 
component). It can also add/delete components or interactions between components. 
When the properties of a component are changed, the associated code of this component 
is marked as inconsistent until it is changed to match the design. 
 
To better understand the qualitative benefits of prescriptive aspects consider the 
following examples which are easy to implement with prescriptive aspects.  After 
designing the basic system, one step towards achieving fault tolerance can be addressed 
by a prescriptive aspect that makes 2 copies of all data of type waypoint_data. A designer 
might also want all data of type pilot_actions to be logged. In addition, it is easy to 
specify that all data of type Y (no matter where it is in the system) should be encrypted 
with a particular encryption scheme. Many other examples can be given for 
non-functional categories of modifications relating to security, persistence, locking, 
real-time and reliability. 
 
Normally, prescriptive aspects are used to modify the basic design. However, since the 
prescriptive aspect language has a create statement, prescriptive aspects can, by 
themselves, implement the entire basic design plus changes to it. While we have not yet 
investigated this feature in detail, building a system this way would be very flexible since 
even the basic design would be easily re-done.  With this feature it is also possible to 
construct a subsystem or infrastructure with the prescriptive aspect language and then 
import that subsystem or infrastructure.  For example, the design of an OS for a set top 
box can be designed using prescriptive aspects, then that OS infrastructure could be 
added to a product simply by executing the prescriptive aspect.  
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4.2 Expert Advice 
When advice is deemed important and potentially usable on more than one project, then 
that advice can be generalized and placed in a global (for this application domain, e.g., 
avionics) prescriptive aspect library by the lead designer. VEST supports reusing such 
prescriptive aspects by organizing them into a prescriptive aspect library. Prescriptive 
aspects will not be permitted into the prescriptive aspect library unless it meets with the 
approval of the system administrator. The requirements include sufficiently general, 
parameterized, complete English description, meaningful constraints specified, and 
relating to non-functional properties. 
 
One way to use the expert advice is as a collection of ideas from previous projects that 
might be applicable. For example, a developer can walk through all the library advice and 
determine if they are appropriate. After designing a functional avionics product, a 
developer may browse through these expert prescriptive aspects for security, real-time 
performance, fault tolerance, and persistence.  For each category they can determine if 
any of the advice should be applied directly or that they need to create similar advice for 
their particular project. This browsing can aid in producing a more complete and tailored 
design and when specific advice is already in the library it is easy to apply.  
 
Also, advice can be grouped in such a way to support implementing a wide reaching 
concept, such as improved computer security. Under general security advice notion, there 
might exist a group of prescriptive aspects that relate to denial of service, encryption, and 
authentication. Applying the high level advice applies the entire group. 
 
4.3 Hierarchies of Advice 
Regardless of how prescriptive aspects are added to a design there can be a need for 
hierarchies of advice. In some cases it may be necessary to apply to a design a set of 
seemingly “unrelated” aspects in some order. To support this feature, the developer has 
the capability to describe precedence constraints among the aspects. More importantly, 
the same mechanisms can be applied to create a “related” set of changes to effect a global 
change to the system (as described above for the security example). In order to make high 
level changes to a design (e.g., in regard to security, fault tolerance, reliability, and 
performance), it is usually necessary to make a set of “related” and more specific changes. 
For example, there can be a group of advice in the prescriptive library that supports a 
secure avionics system. This advice may encompass a collection of changes that includes 
encrypting certain types of communication, adding intrusion detection changes, adding 
modifications that prevent or minimize denial of service. The mechanisms in VEST 
support this type of design where the root of the hierarchy can imply changes needed for 
security, and the rest of the tree contains the specific modifications required.  
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5. VEST Prescriptive Aspect Language (VPAL) 

5.1 Design Philosophy 
VPAL enables users of VEST to specify their prescriptive aspects. The syntax of VPAL is 
specific to the VEST entities that specify components, their attributes, and interactions 
between components. Ease-of-use and modification power are the driving forces behind 
VPAL’s design. VPAL allows the specification of modifications using a simple yet 
powerful syntax. Because of this, VPAL is a language with no data type declarations, 
procedures, control flow, loops and classes. VPAL’s syntax consists of just four key 
statements. It would take a few minutes for a novice programmer to understand VPAL 
and be able to write prescriptive aspects. The power of VPAL’s syntax can only be fully 
realized through its use. The evaluation section presents concrete examples of the time 
saved in by designers using prescriptive aspects written in VPAL. 
 
VPAL is similar to SQL except that the data set being operated on is sets of components 
rather than sets of rows from a table. It is not a procedural, functional, object-oriented or 
even aspect-oriented programming language. It is intended to be specifically used in the 
VEST tool for easily creating prescriptive aspects.  
 
5.2 Separation of Concerns 
As mentioned earlier, prescriptive aspects change a design by adjusting properties in the 
reflective information of components and/or by adding/removing components from the 
design. VPAL explicitly separates the concerns of collection, operation, addition and 
removal of components. Four key statements in the language, Get, Set, Create and Delete 
enable this separation of concerns. Each of these concerns plays an important role in 
fulfilling the objective of prescriptive aspects and they are described in detail below. The 
full BNF specification of the VPAL syntax can be found in Appendix A. 
 
5.2.1 Collection 
A Collection is defined as a set of components from a system design. A collection enables 
a designer to represent a cross section of the design based on the properties of 
components or the relationships between them. This is essentially the value of collection 
as it enables a designer to quickly and easily identify components to be modified which 
would have otherwise taken much manual search time. The Get statement in VPAL 
implements this feature. It assigns the collection to a variable for later use. For example, 
the GET statement 

GET SWComps = (CT == SoftwareComponent); 

finds all components whose component type (CT) is “SoftwareComponent” in the design 
and assigns this set to a variable called “SWComps”. The right side of the statement 
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specifies the search criteria. In this case, we used the component property of type as our 
search criteria, but in general, it can be any component property such as type, name or 
any of the extensive list of attribute values found in the reflective information of a 
component. Search criteria can also be combined into compound statements with boolean 
operations AND, OR and NOT.  
 

5.2.2 Operation 
An Operation involves changing a design on previously gathered collections. An 
operation enables the weaving of user-defined changes into a design. Operations on 
collections are performed with the Set statement that adjusts the properties in the 
reflective information of the collection. For example, the SET statement 

SET SWComps.(PN = MemoryNeeded, PV = 0); 

initializes the property (attribute) name (PN) “MemoryNeeded” of all components in the 
“SWComps” collection to a property value (PV) of zero. 
 
5.2.3 Addition and Deletion 
Addition and removal of components are self-explanatory. These commands enable users 
to weave changes into a design. Addition of components could also potentially be used to 
create large designs from scratch. The Create statement in VPAL adds a set of 
components to the design and assigns this set to a variable for later use. For example, the 
CREATE statement 

CREATE DispComp.(CT = SoftwareComponent,  

CN = MyDisplayComponent,  

PN = ComponentType,  

PV = BM__DISPLAY_COMPONENT); 

creates a display software component with a component name (CN) of 
“MyDisplayComponent” and assigns it to variable “DispComp”. 
The Delete statement removes previously defined collections from the design. For 
example, the DELETE statement 

DELETE DispComp; 

deletes from the design the components defined in the “DispComp” collection. 
 

5.3 Multi-line Semantics 
VPAL supports multi-line semantics. This means that each prescriptive aspect can contain 
multiple lines of instructions. Each instruction is one of the four statements that were 
described above. The multi-line semantics of VPAL allows a user to define and operate 
on multiple collections within the same prescriptive aspect.  
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For example, suppose we wanted to apply the following prescriptive aspect to a 
distributed avionics system being designed in VEST: 
Double the memory needed for all device software components 

- and - 

change all display software components to use double buffering 

Using the multi-line semantics of VPAL, we could specify this prescriptive aspect as 

[1]  GET SwComp = (CT == SoftwareComponent); 

[2]  GET DevComp = SWComp.( 

PN == componentType,  

PV == BM__DEVICE_COMPONENT);  

[3]  GET DispComp = SWComp.( 

PN == componentType,  

PV == BM__DISPLAY_COMPONENT); 

[4]  SET DevComp.(PN == MemoryNeeded, PV = PV * 2); 

[5]  SET DispComp.(PN == DoubleBuffered, PV = 1); 

 

This prescriptive aspect contains two different cross-sections of the design of interest to 
the designer. One contains all device components (line 2) and the other contains all 
display components (line 3). The designer then modifies each set according to the change 
desired (lines 4 and 5). 
 
While VPAL is simple, the downside of simplicity is that the expressive power of the 
language is limited sometimes resulting in redundant code. For example, consider a 
design with a large number of software components that are sub-classified into many 
software component types. Suppose we wanted to write a prescriptive aspect to initialize 
several of the attributes of these software components to different values by type. The 
code would contain redundancy for a design with a large number of software component 
types. This redundancy could be eliminated with loops in VPAL. VPAL can be extended 
to allow loops and other programming language concepts such as control flow, 
procedures, inheritance, overriding, and so on but we have not found it necessary for 
embedded systems of small or moderate size.  
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6. Case Studies and Experiments 

6.1 Case Study I: Composition and Analysis using Product Scenario 3.1 (Basic MP) 
The purpose of this case study is to demonstrate the effectiveness of the ideas 
incorporated in VEST.  To do this we applied VEST to the design and composition of a 
portion of a distributed avionics system that is based on the Bold Stroke middleware. In 
this avionics system, a pilot control component measures coordinate data periodically, 
then sends its coordinate data to a waypoint control component.  Upon receiving 
coordinate data, the waypoint control component calculates a new route for the plan, 
updates its database, and sends that new route to a display component. This avionic 
control system is a typical example of a distributed real-time embedded system with 
many crosscutting concerns.  In fact, this example scenario is posted by Boeing as a 
good scenario for evaluating design and analysis tools as Product Scenario 3.1, BasicMP 
(Basic Multi-Processor) Figure 4 below shows the UML diagram of the avionic system’s 
software architecture. 

way point : 
BM__OpenEDComponent

way pointProxy  : 
BM__OpenEDComponent

f ltPlanDisplay  : 
BM__Display Component

pilo tControl : 
BM__PushDataSourceComponentImpl

inf rastructure
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2. SetData()

6.  I nternalizeState()
7. SetStateUpdated()

1. SetData()

8.  Pus h()

DATA_AVAILABLE9. GetData()

3. SetData()
5. ExternalizeState()

4. Push()

DATA_AVAILABLE

 
Figure 4: UML Diagram of a Pilot Control Subsystem 

To better understand the case study, additional details about the application are provided: 
The system is composed of four first level components: pilotControl, waypointProxy, 
waypoint, and fltPlanDisplay.  They run on the Bold Stroke middleware.  The 
pilotControl component is an event supplier.  It supplies coordinate data to the 
waypointProxy component at a specified frequency.  WaypointProxy is a proxy 
representing the waypoint component and it runs on another processor.  Communication 
is supported by the middleware service known as an event channel. Via the event channel, 
data originating in the pilotControl component is forwarded to the waypoint component.  
Likewise, the waypoint component sends the newly calculated route back to 
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waypointProxy.  Finally, the fltPlanDisplay component gets the new route information 
and displays it. 
 
6.1.1 Design the Pilot Control Subsystem 
In this case study, the developer first creates the system using abstract components. After 
the abstract specification has been performed, the system design might look as shown in 
Figure 5.  
 

 
Figure 5: VEST model of a pilot control system 

In the above diagram there are two layers shown. One layer is the software layer. This 
layer (see the top panel of figure 5) has basic four components: pilot control, 
waypointProxy, waypoint, and fltPlanDisplay. The high-level interaction of these 
components is shown by the dashed lines. By high-level interaction we mean that if there 
is any event propagation from one component to another, then these components are 
connected by an arc.  Direction of a connection shows the flow of events.  A second 
panel in the picture shows the hardware layer. In this example, the system is deployed in 
a distributed environment. It contains two processors: a pilot processor and a waypoint 
processor. They are connected via a bus interconnect. Also, the system has two 
non-volatile memory units and one volatile memory unit. What are not shown in the 
diagram are the OS, Aspect, and middleware layers. The components of these layers can 
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be viewed from the browser menu shown on the right-hand side of figure 5. In the OS 
layer, we have two threads: a Waypoint thread and a PilotControl thread. The waypoint 
thread is mapped to the waypoint processor and the pilot control thread is mapped to the 
pilot control processor.  The components that run on the waypoint thread are Pilot 
Control, WaypointProxy and fltPlanDisplay.  

The persistence service of Bold Stroke is one focus of this case study. Every application 
component that needs to maintain persistent data needs to create a persistence adapter 
that set the follow attributes of the persistence service: save_rate, is_double buffered, and 
track_dirtiness. The save rate specifies the frequency of the persistence thread. 
Is_double_buffered identifies whether the state should be saved twice or not. 
Track_dirtiness is a boolean variable; if true, this parameter causes the state to be 
persistent if the persistent object is dirty (i.e. has been modified and thus the new state 
needs to be saved). 

Double clicking on the software components shows the methods and member variables 
modeled in this component. An event graph is specified at this view (VEST models 
systems at the method level). The specification of the method-calling graph helps in 
completely characterizing the systems execution and thereby provides needed data for 
VEST to perform interface checking and schedulability analysis. After performing these 
operations, the developer chooses actual components from the libraries and maps them to 
these abstract components. After modeling, the VEST developer makes various checks to 
boost his confidence in the correctness of the system.   

6.1.2 Memory Footprint Check 
In this case study, the first checks performed are intra-component checks.  For instance, 
enough memory is vital for the system’s performance.  A memory footprint check is 
available in VEST.  The first part of the memory footprint check is concerned with main 
memory.  It sums the memory needed by all the components in the system, and all the 
available physical memory (RAM) provided by the hardware, and then checks to see if 
there is enough physical memory in the system.  In the case study, the developer 
initially specified the system as follows:  

 PilotControl WaypointProxy Waypoint fltPlanDisplay 

max memory footprint 50M 100M 300M 100M 

However, the hardware memory is only of size 500M.  Considering the system 
overhead, the memory check informs the developer of insufficient memory.  The 
developer either adds more memory, or reduces memory consumption by modifying 
application components.   

The second part of the memory check deals with NVRAM (e.g., EEPROM). Bold Stroke 
allows application programs to specify a set of data in some components to be persistent, 
so that important data in the system survives power failures. For the system to function 
correctly, sufficient NVRAM for persistent components should be provided. Our check 
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assures the developer that there is enough non-volatile memory to meet the system’s 
requirement, or gives warning when not enough NVRAM is provided.  In this case 
study, the system has two NVRAMs with a total capacity of 300 MB. The sum of the 
persistent objects’ size is 200 MB. The persistent object is originally configured as 
double-buffered, which doubles the needed capacity of NVRAM to 400 MB. When 
invoked, the memory footprint check warns that there is insufficient NVRAM. In this 
case study, the designer now reconfigures the persistence adapter to single-buffered 
mode, and the memory check returns successful confirmation. While these checks are 
trivial, they are useful and demonstrate a simple cross cutting constraint. Further, these 
checks are enhanced in the prescriptive aspect example in the next section. 

6.1.3 End-to-End Schedulability Aspect Check 
The developer may then proceed to make additional checks that are more sophisticated. 
VEST provides an automatic schedulability analysis. After the designer completes the 
design of the model, he runs the schedulability analysis to check the model. This analysis 
requires the DM/Offset analysis because the software components are mapped to multiple 
interconnected processors in the model. However, the output of the schedulability 
analysis shows that the model is not schedulable, as depicted in the following. The 
beginning of the output is a method list including the period and worst-case execution 
time (WCET) of the methods in the CORBA components. Based on the event graph, 
multiple interacting methods on a same processor are grouped into a subtask, which is 
mapped to a thread. The second part of the output is the subtask list on each processor 
and its schedulability analysis results. The subtask list includes the period, WCET, and 
the intermediate deadline and offset of each subtask. For the initial design with a period 
of 400 ms, the analysis shows that processor 2 is schedulable, but processor 1 is not. 
Therefore, the design should be changed. 

 

List of methods 

MethodName MeasureLocation Processor Processor1 Period 400 WCET 67 

MethodName Push          Processor Processor1    Period 400 WCET 2 

MethodName Push   Processor Processor2    Period 400 WCET 4 

... ... 

Subtasks on Processor2 

Subtask Push Processor 2 Period 400 WCET 4 Deadline 160 Startime 81 

Subtask CalculateRoute  Processor 2 Period 400 WCET 2 Deadline 320 

Startime 241 

Priority level 2 has been assigned to Push. 

Priority level 1 has been assigned to CalculateRoute. 

Schedulability test on Processor2 passed. 

Subtasks on Processor1 
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Subtask MesureLocation+Push+GetData Processor 1 Period 400 WCET 102 

Deadline 80 Startime 0 

Subtask DataReadyPush+Push+GetData+Display Processor 1 Period 400 WCET 

11  

 Deadline 240 Startime 161 

Subtask GetData Processor 1 Period 400 WCET 2 Deadline 400 Startime 321 

Couldn’t assign, try next 

Priority level 3 has been assigned to 

DataReadyPush+Push+GetData+Display. 

Couldn’t assign, try next 

Priority level 2 has been assigned to GetData. 

Couldn’t assign, try next 

Schedulability test on Processor1 failed. 

 

Output of the schedulability check on the original pilot control subsystem with a period of 
400 ms 
 
6.2 Case Study II: Measurement of Composition Time using Product Scenario 3.2 
(Multi-Rate MP) 
We performed a second case study to measure the benefits of VEST in composing 
distributed avionics systems. The performance metric is the time it takes to compose 
(including design, implementation via composition, and testing or analysis) an avionics 
product scenario to achieve end-to-end distributed real-time schedulability. This 
experiment was accomplished in a very limited situation. One expert from Boeing 
performed the experiment using their current approach. And one grad student performed 
the experiment using VEST. For each person we timed the various steps involved with 
this experiment. Since this is a single experiment with many potential issues, the results 
are not definitive. However, we believe that the results are representative and discuss how 
they might generalize to a larger experiment. 
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Figure 6: Multi-Rate Multiprocessor Scenario 

The experiments used Product Scenario 3.2 (Multi-Rate Multi-Processor) as a target 
system to be composed. The scenario represents that portion of an avionics system that 
displays waypoint and radar data and is published by Boeing as a typical subsystem to 
facilitate research that is applicable to real world problems. The waypoint data can be 
changed by the pilot and the radar data is produced at a 5hz rate by the radar device. The 
sensor coordinator notifies each logical sensor of when its data should be updated. 
 
This scenario is initially triggered by an interval timeout that is consumed by the 
pilotControl component.  Upon receipt of this event, the pilotControl pushes data to the 
waypointProxy via the Set operations in the proxy’s facet.  The waypointProxy then 
forwards this call via the Infrastructure component to the waypoint component.  The 
waypoint then updates its state and issues a Data Available event.   That event causes 
the Replication Service to extract the state from the waypoint and send it to the 
waypointProxy.  The waypointProxy internalizes this state and issues its own Data 
Available event.  The proxy’s event is consumed by the fltPlanDisplay component that 
gets the data from the proxy and displays it. 
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The baseline toolset for comparison includes Rational Rose and Quantify both of which 
are currently used in Boeing’s product development. The UML models of all Bold Stroke 
components were available in Rational Rose before the experiment started.  WCET of 
all used components were also available in the library before the experiment started. An 
expert at Boeing used the following process to compose Product Scenario PS 3.2: 
 

1. Design PS 3.2 by integrating the UML models of existing components in Rational 
Rose.  

2. Implementation: Program the design by connecting existing Bold Stroke 
components in C++ through the Bold Stroke event service.   

3. Testing: Run the implemented system to check for timing violations. If any timing 
violations are detected, go back to step 1; Otherwise, the composition is 
completed. 

 
At UVA, a graduate student familiar with VEST used VEST to compose the same product 
scenario. The VEST experiment included the following steps: 
 

1. Design PS 3.2 in VEST using component libraries. 
2. Scheduling analysis: Run the VEST scheduling tool to assess the schedulability of 

the design (without implementing the system). If the analysis shows that the 
design is not schedulable, go back to step 1. Otherwise, go to step 3. 

3. Implementation: Program the VEST design. 
 
Both VEST and the baseline experiments included two iterations of composition. 
Initially, the system was designed on a single-processor platform. Since the 
single-processor design turned out to be unschedulable, a new composition was needed. A 
new processor was added to the system and a distributed version of PS 3.2 was composed 
by moving several components to the new processor. The distributed version was found 
to be schedulable. The VEST scheduling tool can automatically identify the applicable 
scheduling analysis that matches the system characteristics. Maximum Urgency First 
(MUF) scheduling analysis was automatically invoked for the single-processor design, 
and the DM/Offset scheduling analysis was automatically invoked for the distributed 
design. 
 
We measured the total composition time as well as the time that each step took in both 
experiments. The results are summarized in Table 1. We used X.i.k to represent the kth 
step in the ith iteration of the X experiment, where X=V refers to the VEST experiment 
and X=B refers to the baseline experiment.  
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 VEST Baseline 
Step Time 

(min) 
Step Time 

(min) 
V.1.1 Design: single processor 40 B.1.

1 
Design: single 
processor 

25 

   B.1.
2 

Implement: single 
processor 

75 

V.1.2 Scheduling analysis: single 
processor 

1 B.1.
3 

Test: single processor 30 

V.2.1 Re-design: distributed 25 B.2.
1 

Re-design: 
distributed 

90 

   B.2.
2 

Implementation: 
distributed 

105 

V.2.2 Scheduling analysis: 
distributed 

1 B.2.
3 

Test: distributed 20 

 Implementation: distributed 105    
Total Composition Time 172 Total Composition Time 345 

Table 1: Measured Time with VEST and Baseline in Case Study II 
 
Our measurement showed that VEST effectively reduced the total composition time of PS 
3.2 by 50%. Analyses on the time spent on each step shows two key advantages of VEST 
compared to the baseline: 
  

• Reduce the rounds of implementations: Scheduling analysis enables VEST to 
drop wrong (unschedulable) designs without implementing the system. In this 
case study, the scheduling analysis showed that the single-processor design was 
unschedulable. Hence the VEST user avoided implementing the single-processor 
composition (Step B.1.2) and saved 75 min. Compared to the baseline, this 
reduced the total composition time by 22%. Note also that in VEST the 
scheduling is a rigorous analysis and in the standard approach it is only done via 
testing which is more error prone. 

• Replace time-consuming testing with quicker analyses: Two schedulability 
analyses (Steps V.1.2 and V.2.2) in VEST took a total of only 2 minutes, 
compared to a total testing time of 50 minutes (Steps B.1.3 and B.2.3) in the 
baseline experiment. This saved the VEST user 48 min and reduced the 
composition time by 14% compared to the baseline.  

 
While this case study focused on the scheduling part of VEST, we should note that both 
of the above benefits are also applicable to other aspect checks of VEST.  Aspect checks 
enable developers to detect crosscutting composition errors at design time and let 
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developers correct system designs without implementing them. Since crosscutting 
dependencies are often non-obvious and difficult to find through test, explicit design-time 
checks can save significant amount of testing time.  
 
While the initial experimental results on this relatively simple scenario are very 
encouraging, we expect VEST to save even more time in more complex systems with 
larger number of components. To show this, we now give a simple analysis. Let us 
assume that  
 

• composing a system requires N iterations;  
• implementing a design from VEST and the baseline both take Ti min;  
• the average time for each testing is Tt min.  
• The average time for each design in VEST and the baseline are both Td;  
• The average time for each analysis in VEST is Ta. Since analyses take much less 

time than testing, Ta << Tt.  
 
The total composition time with the baseline is Tbase = N(Td+Ti+Tt), and the total 
composition time with VEST is Tvest = N(Td+Ta)+Ti. It follows that the time saved by 
VEST is ∆T = (N-1)Ti+N(Tt-Ta). While this analysis is somewhat simplified, the general 
conclusion is that the more design iterations (N) a system need, the more time an aspect 
tool like VEST can save in the composition process. Since complex systems usually 
involve more crosscutting dependencies and require more iterations, we expect VEST to 
scale much better than the baseline in such systems. We plan to test VEST in a bigger 
product scenario (with more than 400 components) to verify the scalability of VEST in 
large systems. 

6.3 Case Study III: Focusing on Prescriptive Aspects using Product Scenario 3.3 
(Concurrency MP) 

In this section, we demonstrate the benefits of prescriptive aspects through a case study. 
We apply prescriptive aspects to the design of an avionics system, which is based on the 
Boeing Bold Stroke platform. We show how prescriptive aspects support system 
modification, provide expert advice, and save 69% of design time.  This savings is 
obviously quite conspicuous.  But it should be noted that the specific scenario was set 
up to result in scheduling and memory system errors that would require a great deal of 
post-design coding and testing to discover without the use of the VEST design time 
analysis capabilities.  In the situation that a system did not contain such errors, the time 
savings from using VEST would be greatly reduced.  The more VEST-detectable errors 
a system has – the greater the benefit of using VEST. 
 
The baseline toolset for comparison includes Rational Rose and Quantify which are both 
currently used in Boeing’s product development. The UML models of all Bold Stroke 
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components were available in Rational Rose before experimentation started. The 
worst-case execution times (WCET) of all components used were also available before 
experimentation began. 
 
Figure 7 below shows the UML diagram of the software architecture of P.S 3.3 
(Concurrency Multi-Processor). This system corresponds to a navigation type function on 
an aircraft. The aircraft maintains a list of waypoints (points to fly the aircraft to).  

Figure 7: Concurrency MP Scenario 
 
Waypoints are selected in groups to form routes (a series of points to fly the aircraft to, 
one after the other).  The pilot can modify the waypoints to change the current route of 
the aircraft. In addition, GPS sends location information to the system periodically. The 
current waypoint and current aircraft position are displayed periodically.  
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BM__ClosedEDComponent

AirframeSynchProxy_20HZ : 
BM__ClosedEDComponent

ORB

AF_Monitor : 
BM__DisplayComponent

7: GuardExternalRegion
23: GuardExternalRegion

15: GuardExternalRegion

28: GuardExternalRegion

Frame controller receives a 
40Hz Timeout.  It then pushes 
an event to all event ques at 
their prescribed rates 
(40,20,10,5,1).

Process 2

MC__3_3ConcurrencyMP Scenario
Internal locking 
strategy

External locking 
strategy

SynchronousProxy 
locking strategy

2: Push

3: Get

4: Push

5: RetrieveState

22: Push

24: Get
21: Set

29: Get

27: Push

19: Set

20: Set

1: Push_20HZ

11: Push_5HZ

13: Push_5HZ

16: Get

14: Push

17: Push

12: RetrieveState

6: Push8: Get

9: ReplicateData
25: ReplicateData

10: ReplicateData
26: ReplicateData

18: Get



28 

This navigation system is a typical example of a distributed real-time embedded system 
with many crosscutting concerns. Such concerns include real-time schedulability as well 
as event channel, memory and buffer requirements. These and many other concerns are 
critical to the overall system. We use aspect checks to identify them and prescriptive 
aspects to modify them if they do not meet the system requirements. 
 
Throughout our experiment, prescriptive aspects are used for two primary purposes: 
system modification and expert advice.   
 
6.3.1 System Modification  
First in this experiment, the designer started to design an avionics system in VEST based 
on product scenario 3.3 provided by Boeing. He composed the system using the 
components from the VEST component library. Afterward, he assigned different values to 
attributes such as memory size, buffer size, WCET, and period to the components 
accordingly. 
 
After running the memory footprint aspect check however, the designer found out that the 
amount of memory allocated in hardware was smaller than required by the software 
components. Instead of modifying the attribute values (named MemoryNeeded) of the 
components manually, the designer decided to use a prescriptive aspect. He executed the 
following prescriptive aspect, which reduces by half the memory allocated to software 
components of type BM__DISPLAY_COMPONENT. 

 
Then he re-ran the memory footprint check and it passed. This saves time over modifying 
the system parameters manually and is more accurate. 
 
After checking the memory allocation, the designer checked the schedulability of the 
system design by running the schedulability aspect check. The check failed because in 
this case, event suppliers in the system were specified to have too high a WCET value 
that caused tasks in the system to miss their deadlines. In general, there can be several 
factors that cause a schedulability test to fail such as insufficient task period or high 
WCET value. Again, instead of modifying all these parameters manually, the designer 
modified the system automatically by executing the following prescriptive aspect. 

GET A = (CT == SoftwareComponent) AND 

  (PN == componentType, PV ==    

BM__DISPLAY_COMPONENT); 
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This prescriptive aspect collected the event supplier components that are contained in 
software components and are connected to event consumer components, and set their 
WCETs to 10ms. After making this modification, the schedulability test passed. Of 
course, these modified components must be reprogrammed to meet this new WCET. 
 
6.3.1.1 Expert Advice 
Prescriptive aspect can be used to provide expert advice on the design of a system. Expert 
advice in this context is generic advice that applies to various scenarios sharing the same 
meta-model. Usually expert advice is stored in a library. Designers can retrieve the expert 
advice from the library and reuse the advice by applying them to every relevant scenario 
conforming to the same meta-model. 
 
In this case study, we used assignment locking strategies to components as an example of 
expert advice. There are three kinds of locking strategies used by components in the Bold 
Stroke platform: internal, external and synchronous proxy. The internal locking strategy 
requires a component to lock itself when data is modified. An external locking strategy 
requires the user to explicitly acquire a component’s lock before accessing its data and 
release the lock when finished. The synchronous proxy strategy requires the use of 
cached states. Knowledge of such locking strategies is generic and applies to all Boeing 
OEP product scenarios. Therefore, we put this particular prescriptive aspect into the 
general expert advice library. When a designer wants to apply this set of locking 
strategies to his design, he can choose the prescriptive aspect from the library and execute 
it.  
 
The internal locking strategy: 

 
The external locking strategy: 

GET SW = (CT == SoftwareComponent); 

SET SW.(PN=lockingMode, PV=INTERNAL);

GET SW = (CT == SoftwareComponent); 

GET ES = (CT == EventSupplied); 

GET EC = (CT == EventConsumable); 

GET ContES = SW[$ONEONE,$DR=$CONT]$ES; 

GET ContEC = SW[$ONEONE,$DR=$CONT]$EC; 

GET MappedES = $ES[$MANYONE,$DR=$CONN] 

EC; 

SET MappedES.(PN=WCET, PV=10); 
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And synchronous-proxy locking strategy: 

 
 
By default, we assume every software component uses internal locking. A “PushPull” 
software component is defined as one that updates its values (by pulling or getting data 
from its suppliers) when it receives an indication (through a push or set). According to 
our application rules, any PushPull software component that has one or more data 
suppliers must use external locking.  This is what is coded in the external locking 
prescriptive aspect. Finally, any component that receives data from more than event 
channel, each running on different timers in the system should use synchronous-proxy 
locking as indicated by the last prescriptive aspect.  
 
By applying this expert advice, we assign different locking strategies to all the software 
components in the system. This prescriptive aspect is stored as expert advice in the library. 
Using prescriptive aspects for expert advice saves the designer a lot of time by 
automating decision-making. This is especially useful when used in designs with a large 
number of components and where there is a lot of interaction among the components.  
 
6.3.2 Hierarchical Prescriptive Aspects 
A simple prescriptive aspect is a self-contained entity of one or more VPAL statements. 
The previous sections illustrated some simple prescriptive aspects. In addition, VEST 
provides support for hierarchical prescriptive aspects. 

GET SW = (CT==SoftwareComponent); 

GET EC = (CT==EventConsumable); 

GET Timers = (CT==SWTimer); 

GET SWMappedEC = $SW 

 [$ONEMANY,$DR=$CONT] EC; 

GET SWMappedTimer = $SW 

 [$ONEONE,$DR=$CONT] Timers; 

GET SynchProxy = $SWMappedEC 

 [$ONEMANY,$DR=$CONN] 

 SWMappedTimer; 

SET SynchProxy.(PN=lockingMode, 

GET PushPull =(CT==SoftwareComponent) 

 AND (PN==componentType, 

 PV==BM__PUSH_PULL_COMPONENT); 

GET EC = (CT == EventConsumable); 

GET PushPullMappedEC = $PushPull

 [$ONEMANY,$DR=$CONT] EC; 

SET PushPullMappedEC. 
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Hierarchical prescriptive aspects are comprised of one or more simple prescriptive 
aspects with precedence constraint rules. This enables a designer to define several 
independent simple prescriptive aspects that can later be combined into a single 
compound prescriptive aspect. In addition, the designer can ensure that when the 
compound prescriptive aspect is executed, there is a guarantee over the order of execution 
of the constituent simple prescriptive aspects. 
 
We used a hierarchical prescriptive aspect to perform system initiation in our experiment. 
We defined independent prescriptive aspects to initialize the memory requirements of the 
system, the buffer size allocation, real-time properties of components such as WCET and 
the locking strategies to be used by different components of the system. In the interest of 
space, we do not show these prescriptive aspects here. By combining these prescriptive 
aspects into a single hierarchical prescriptive aspect, we were able to precisely define 
how our design should be initialized before being deployed.  
 
6.3.2.1 Experimental results 
We performed an evaluation to measure the benefits of prescriptive aspects in composing 
distributed avionics systems. The performance metric is the time it takes to compose 
(including design, implementation via composition, and testing or analysis) an avionics 
product scenario to achieve end-to-end distributed real-time schedulability, memory 
allocation, buffer size assignment and locking strategy assignment. This experiment was 
accomplished in a very limited situation. An expert from Boeing performed the 
experiment using their current approach, and a researcher from UVa performed the 
experiment using prescriptive aspects in VEST. For each person we timed the various 
steps involved with the experiment. Since this is a single experiment with many potential 
issues, the results are not definitive. However, we believe that the results are 
representative and are consistent with other tests performed earlier on other product 
scenarios. 
 
The baseline comes from the time estimates for Boeing to build, analyze and validate an 
avionics system conforming to product scenario 3.3, while VEST uses prescriptive 
aspects to do the same work. 
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VEST Baseline 

Step Time (min) Step Time 

(min) 

V.1.1 Design: 128 B.1.1 Design 280 

 Memory check 1 B.1.2 Memory check 20 

 Fixing memory problem using VPAL 20  Fixing memory problem 80 

V.1.2 Scheduling check: 1 B.1.3 Timing Test 30 

 Fixing scheduling using VPAL 15  Fixing scheduling 110 

 Scheduling check 1  Timing Test 20 

 Scheduling analysis: distributed 1  Test: distributed 20 

 Assign locking strategies using VPAL 1  Assign locking strategies 30 

 Implementation:  320  Implementation 960 

Total Composition Time 488 Total Composition Time 1550 

Table 2: Comparison between UVa and Boeing data 
 
From the Table above all steps in the design process are faster with VEST. Overall, the 
VEST approach saved 69% of the time needed to design and implement a distributed 
avionics system. Since the memory and real-time scheduling analysis are automatic, the 
VEST tool should save even more time both (i) when used for larger systems, and (ii) 
when designers wish to attempt multiple competing designs.  For example, suppose a 
particular design solution, shown to meet the requirements, had 3 processors, 1 MB of 
memory and various amounts of replication for different data types.  The designer might 
consider removing a processor and modifying some of the replication and re-run the 
analysis. Re-running the analysis is very fast and each tradeoff-analysis cycle improves 
the time gains of using VEST. If the new system still meets the requirements, then the 
designer has competing solutions to choose among. 



33 

7. Deliverables 
There have been 4 major releases and 2 minor releases of VEST. These releases are 
numbered starting at 1.0 and ending at 5.0. The delivery timeline for these releases is 
shown below. 
 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2002    1.0         
2003    2.0   3.0    3.1  
2004 4.0     4.1   5.0    
 
Each of these releases is outlined below along with the features that were included. 
7.1 VEST 1.0 
o VEST meta-model implemented in GME 
o Features 

o RM and EDF RT-Scheduling Check 
o First Version of Prescriptive Aspect Interpreter 
o Automated Inputs (Linkage with MOBIES) 

 ACL map to VEST (components) 
 IIF map to VEST (execution time and dependencies) 

7.2 VEST 2.0 
o RT-Scheduling 

o Deadline monotonic with Phased offset 
o VEST to XML Configuration Mapper 

o Modified VEST model to include home, receptacles, distributed roles, 
persistence and concurrency 

o Produce configuration file 
7.3 VEST 3.0 
o Executable and source code made available with InstallShield 
o New/Enhanced Features 

o Buffer-size Aspect Check  
o Memory-size Aspect Check  
o RT-Scheduling Check 

 Enhanced to support centralized and distributed robust scheduling 
o New hardware components added to library 
o 50 page User’s Manual supplied with release 
7.4 VEST 3.1 
o New/Enhanced Features 

o Event Aspect Check 
o RT-Scheduling Check 
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 New Scheduling API provided to support other Technology 
Developers 

7.5 VEST 4.0 
o New/Enhanced Features 

o Interpreter for new VEST Prescriptive Aspect Language (VPAL) implemented 
o Updated User’s Manual 
7.6 VEST 4.1 
o VEST Metamodel Improvements 

o Resolved data type, naming and redundancy inconsistencies 
o New/Enhanced Features 

o VPAL 
 Create Statement implemented 
 More robust and user-friendly interface implemented 

o New event channel model implemented 
o New GUI icons provided 
7.7 VEST 5.0 
o Initial Quality of Service Capabilities    
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8. Summary 
When building embedded systems from components, those components must interoperate, 
satisfy various dependencies, and meet non-functional requirements. The VEST toolkit 
can substantially improve the development, implementation and evaluation of these 
systems. The toolkit focuses on using language independent notions of aspects to deal 
with non-functional properties, and is geared to distributed embedded system issues that 
include application domain specific code, middleware, the OS, prescriptive aspects, and 
the hardware platform. The VEST tool has been implemented and used on three case 
studies, two of which are described in this paper. The case studies (i) qualitatively 
demonstrate the benefits of our tool and (ii) include quantitative data that show a savings 
of over 50% in design and analysis time. Overall, a main advantage of our tool is that it 
has the potential to address the most difficult parts of component composition, the hidden 
crosscutting dependencies including overall, distributed real-time analysis.  
 
Boeing is investigating the use of this tool as an integral part of a larger reuse library for 
avionic components.  A very important advantage of VEST is using it as a repository for 
capturing reflective design information of system components.  However, building and 
maintaining such a repository requires a significant commitment.  Additional follow-up 
testing is needed to verify that VEST is scalable for use in typically large avionics 
systems.  Hopefully, additional resources can be obtained to incorporate Quality of 
Service design capabilities into VEST, which will make it an even more valuable design 
tool.  
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Appendix A. BNF Grammar of VPAL 
<statement_list> = <statement_list> <statement> ”;” 

 

<statement>  =  <get_statement>  

|  <set_statement>  

|  <create_statemnt>  

|  <delete_statement>    

 

<get_statement>  =  GET <Variable> “=” <get_expression>  

| GET <Variable> “=” <Variable>“.”“(“ <get_expression>“)”

  

 

<set_statement>  = SET <Variable>“.”“(“ <set_expression> “)” 

 

<create_statement>  = CREATE <create_expression> 

        

<delete_statement> = PDELETE <delete_expression>     

 

<create_expression> = <Variable> “=” “(“ STRING “,” <create_sub_expression> “)”  

 | <Variable> “.” “(“ <Relation> “,”      

 <create_sub_ref_expression>“)”  

 

<create_sub_expression> = <ObjectType> “=” <Value>  “,” <create_sub_expression> 

 

   | <ObjectType> “=” <Value> 

        

<create_sub_ref_expression> = <Variable> 

| <ObjectType> “==” STRING 

 

<delete_expression> = <Variable>        

   | <Variable> “.” <Relation> 

       

<set_expression> = “(“ <set_expression> “)” 

   | <ObjectType> “=” <Value> “,” <set_expression > 

   | <ObjectType> “=” <Value> 

      

<get_expression> = “(“ <get_expression> “)” 

   | <get_expression> AND <get_expression> 

   | <get_expression> OR <get_expression> 

   | NOT <get_expression> 
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   | <ObjectType> “==” <Value> 

   | <ObjectType> “==” <Value> “,” <ObjectType> “==” <Value> 

   | <Variable> <Relation> <Variable> 

 

<Relation>  =  “[“ <Function_Type> “,” <Mapping_Type> “=”  

    <Relation_Type> “,” STRING  “]”  

 

<Mapping_Type> = $DR    // Direct Relation 

   | $IR   // Indirect Relation 

 

<Relation_Type> = $CONT   // Containment 

   | $REF   // Reference 

   | $CONN   // Connection 

        

<Function_Type> = $ONEONE   // One-to-one 

   | $ONEMANY  // One-to-many 

   | $MANYTOONE  // Many-to-one 

   | $MANYMANY  // Many-to-many 

     

<ObjectType>  = CT   // Component type 

   | CN   // Component name 

   | PN    // Property Name       | PV 

  // Property Value 

 

<Variable>  = '$' STRING   // Return variable 

   | STRING  

    

<Value>  = INTEGER 

   | STRING        

   | “*”   // For wildcard specification 

   | <scalar_exp> 

 

<scalar_exp>  = <scalar_exp> “+” <scalar_exp>   

   | <scalar_exp> “-“ <scalar_exp> 

   | <scalar_exp> ”*” <scalar_exp> 

   | <scalar_exp> “/” <scalar_exp> 

   | “-“ <scalar_exp> 

   | “+” <scalar_exp> 

   | “(“ <scalar_exp> “)”               

   |  <ObjectType>          

   | INTEGER       


